Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 5(1): 45, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396385

RESUMO

Amyotrophic Lateral Sclerosis (ALS) disease severity is usually measured using the subjective, questionnaire-based revised ALS Functional Rating Scale (ALSFRS-R). Objective measures of disease severity would be powerful tools for evaluating real-world drug effectiveness, efficacy in clinical trials, and for identifying participants for cohort studies. We developed a machine learning (ML) based objective measure for ALS disease severity based on voice samples and accelerometer measurements from a four-year longitudinal dataset. 584 people living with ALS consented and carried out prescribed speaking and limb-based tasks. 542 participants contributed 5814 voice recordings, and 350 contributed 13,009 accelerometer samples, while simultaneously measuring ALSFRS-R scores. Using these data, we trained ML models to predict bulbar-related and limb-related ALSFRS-R scores. On the test set (n = 109 participants) the voice models achieved a multiclass AUC of 0.86 (95% CI, 0.85-0.88) on speech ALSFRS-R prediction, whereas the accelerometer models achieved a median multiclass AUC of 0.73 on 6 limb-related functions. The correlations across functions observed in self-reported ALSFRS-R scores were preserved in ML-derived scores. We used these models and self-reported ALSFRS-R scores to evaluate the real-world effects of edaravone, a drug approved for use in ALS. In the cohort of 54 test participants who received edaravone as part of their usual care, the ML-derived scores were consistent with the self-reported ALSFRS-R scores. At the individual level, the continuous ML-derived score can capture gradual changes that are absent in the integer ALSFRS-R scores. This demonstrates the value of these tools for assessing disease severity and, potentially, drug effects.

2.
Nat Neurosci ; 25(3): 369-380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260860

RESUMO

Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.


Assuntos
Idioma , Linguística , Encéfalo/fisiologia , Humanos
3.
J Acoust Soc Am ; 124(3): 1739-58, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19045664

RESUMO

This paper elaborates on a computational model for speech recognition that is inspired by several interrelated strands of research in phonology, acoustic phonetics, speech perception, and neuroscience. The goals are twofold: (i) to explore frameworks for recognition that may provide a viable alternative to the current hidden Markov model (HMM) based speech recognition systems and (ii) to provide a computational platform that will facilitate engaging, quantifying, and testing various theories in the scientific traditions in phonetics, psychology, and neuroscience. This motivation leads to an approach that constructs a hierarchically structured point process representation based on distinctive feature landmark detectors and probabilistically integrates the firing patterns of these detectors to decode a phonological sequence. The accuracy of a broad class recognizer based on this framework is competitive with equivalent HMM-based systems. Various avenues for future development of the presented methodology are outlined.


Assuntos
Vias Auditivas/fisiologia , Simulação por Computador , Sinais (Psicologia) , Modelos Biológicos , Acústica da Fala , Percepção da Fala , Interface para o Reconhecimento da Fala , Percepção do Tempo , Limiar Auditivo , Humanos , Cadeias de Markov , Psicoacústica , Detecção de Sinal Psicológico , Processamento de Sinais Assistido por Computador , Espectrografia do Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA